• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Secure facial recognition in the encrypted domain using a local ternary pattern approach

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021
    Author
    Khan F.A.
    Bouridane A.
    Boussakta S.
    Jiang R.
    Almaadeed S.
    Metadata
    Show full item record
    Abstract
    Automatic facial recognition is fast becoming a reliable method for identifying individuals. Due to its reliability and unobtrusive nature facial recognition has been widely deployed in law enforcement and civilian application. Recent implementations of facial recognition systems on public cloud computing infrastructures have raised strong concerns regarding an individual's privacy. In this paper, we propose and implement a novel approach for facial recognition in the encrypted domain. This allows for facial recognition to be performed without revealing the actual image unnecessarily as the features stay encrypted at all times. Our proposed system exploits the homomorphic properties of the Paillier cryptosystem and performs Euclidean distance calculations using encrypted data. We propose to represent the images using a radial Local Ternary Pattern approach where a higher than proposed radius is used to extract the image features. Our proposed system has been evaluated using two publicly available datasets and has also been compared against the previously used eigenface approach in the encrypted domain and the obtained results justify the feasibility of the proposed system.
    DOI/handle
    http://dx.doi.org/10.1016/j.jisa.2021.102810
    http://hdl.handle.net/10576/31092
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video