• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    End-to-End Image Steganography Using Deep Convolutional Autoencoders

    Thumbnail
    Date
    2021
    Author
    Subramanian N.
    Cheheb I.
    Elharrouss O.
    Al-Maadeed, Somaya
    Bouridane A.
    Metadata
    Show full item record
    Abstract
    Image steganography is used to hide a secret image inside a cover image in plain sight. Traditionally, the secret data is converted into binary bits and the cover image is manipulated statistically to embed the secret binary bits. Overloading the cover image may lead to distortions and the secret information may become visible. Hence the hiding capacity of the traditional methods are limited. In this paper, a light-weight yet simple deep convolutional autoencoder architecture is proposed to embed a secret image inside a cover image as well as to extract the embedded secret image from the stego image. The proposed method is evaluated using three datasets - COCO, CelebA and ImageNet. Peak Signal-to-Noise Ratio, hiding capacity and imperceptibility results on the test set are used to measure the performance. The proposed method has been evaluated using various images including Lena, airplane, baboon and peppers and compared against other traditional image steganography methods. The experimental results have demonstrated that the proposed method has higher hiding capacity, security and robustness, and imperceptibility performances than other deep learning image steganography methods.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3113953
    http://hdl.handle.net/10576/31102
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video