• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pulmonary Fibrosis Progression Prediction Using Image Processing and Machine Learning

    Thumbnail
    Date
    2021
    Author
    Aboeleneen A.E.
    Patel M.K.
    Al-Maadeed, Somaya
    Metadata
    Show full item record
    Abstract
    The onset of COVID-19 has focused the attention of the research community on lung diseases and conditions. Idiopathic pulmonary fibrosis (IPF), in which internal scarring of the lung takes place, has gone undetected among the various populace. This condition has no known cure. So far, computer vision researchers, along with radiologists, have been successfully able to identify the IPF through lung CT-scans but have had difficulty in identifying the severity of IPF. In this research, we will investigate the use of image processing and machine learning techniques to identify the progression of the disease. For that, we will build two machine learning models and compare them. The first model uses patients biological indications and some histogram features of the CT scans. The second model uses the ensemble method of a convolution neural network (CNN) of patients CT scans and quantile regression of the patient's biological data for predicting the Forced Vital Capacity (FVC, an indicator of IPF severity). The results showed that by using the second model, we got a higher r2 value of 0.93 versus 0.89 using the first model and that the biological data had more importance than the CT scans for predicting the lung declination.
    DOI/handle
    http://dx.doi.org/10.1007/978-3-030-14647-4_11
    http://hdl.handle.net/10576/31103
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video