• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Infrared Versus Visible Image Matching for Multispectral Face Recognition

    Thumbnail
    Date
    2020
    Author
    Syed W.W.
    Al-Maadeed, Somaya
    Metadata
    Show full item record
    Abstract
    Multispectral face recognition has been an interesting area of research where images obtained from different bands are matched. There are many face image datasets available which contain infrared and visible images. In most face recognition applications, the IR image taken in different circumstances is matched against the visible image available in the application database. High computational cost is required for processing these images. In the literature, there is no guideline about the optimal number of features for dealing with multispectral face datasets. Thus, in this paper, we will perform image matching using infrared and visible images for face recognition and establish the threshold of the optimal number of features required for multispectral face recognition. The experiments conducted are on SCFace?surveillance cameras face database. The experimental setup for multispectral face recognition using LBP and PCA feature sets and the experimental results are discussed in the paper
    DOI/handle
    http://dx.doi.org/10.1007/978-981-32-9343-4_40
    http://hdl.handle.net/10576/31129
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video