• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Texture analysis for colorectal tumour biopsies using multispectral imagery

    Thumbnail
    Date
    2015
    Author
    Peyret R.
    Bouridane A.
    Al-Maadeed, Somaya.
    Kunhoth S.
    Khelifi F.
    Metadata
    Show full item record
    Abstract
    Colorectal cancer is one of the most common cancers in the world. As part of its diagnosis, a histological analysis is often run on biopsy samples. Multispecral imagery taken from cancer tissues can be useful to capture more meaningful features. However, the resulting data is usually very large having a large number of varying feature types. This papers aims to investigate and compare the performances of multispectral imagery taken from colorectal biopsies using different techniques for texture feature extraction inclduing local binary patterns, Haraclick features and local intensity order patterns. Various classifiers such as Support Vector Machine and Random Forest are also investigated. The results show the superiority of multispectral imaging over the classical panchromatic approach. In the multispectral imagery's analysis, the local binary patterns combined with Support Vector Machine classifier gives very good results achieving an accuracy of 91.3%.
    DOI/handle
    http://dx.doi.org/10.1109/EMBC.2015.7320057
    http://hdl.handle.net/10576/31141
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video