• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Undecimated wavelet-based Bayesian denoising in mixed Poisson-Gaussian noise with application on medical and biological images

    Thumbnail
    Date
    2015
    Author
    Boubchir L.
    Al-Maadeed, Somaya
    Bouridane A.
    Metadata
    Show full item record
    Abstract
    Due to photon and readout noise biomedical images are generally contaminated by a mixed Poisson-Gaussian noise. In this paper, we propose a Bayesian image denoising methodology for images corrupted by a mixed Poisson-Gaussian noise. The proposed method first applies a Generalized Anscombe transform in order to convert the Poisson noise into Gaussian one. The PCM S S Bayesian estimator using the undecimated wavelet transform is then performed to remove the Gaussian noise. Finally, the exact unbiased inverse of the Generalized Anscombe transformation is applied to improve the recovery of the estimated denoised image. The experiments on real medical and biological images show that the proposed approach outperforms the MS-VST method especially in the presence of a high Poisson-Gaussian noise. It also ensures a good compromise between the noise rejection and the conservation of fine details in the estimated denoised image.
    DOI/handle
    http://dx.doi.org/10.1109/IPTA.2014.7001926
    http://hdl.handle.net/10576/31145
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video