• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Kinetics of humics removal from water and wastewater using granular activated carbon, iron-coated activated alumina, and beta ferric oxihydroxide

    Thumbnail
    Date
    2010
    Author
    Khraisheh, Majeda
    Andre, C.
    Alghouti , M.
    Metadata
    Show full item record
    Abstract
    Application of kinetic models to represent the removal of humic substances from water and wastewater was investigated. An adsorbate-adsorbent system was represented by humic substances and three adsorbents, namely granular activated carbon (GAC), iron-coated activated alumina (AAFS), and ferric oxihydroxide in its beta form. The Elovich, internal diffusion, and external diffusion models were considered. The first model represents fairly well the experimental data for GAC and AAFS. The intraparticle diffusion model applies well for the second stage (stage 2) of adsorption only. Reliable diffusion coefficients were estimated for GAC and beta ferric oxihydroxide. A different phenomenon occurred with AAFS, as adsorption seemed to follow a second stage instead of stage 3, which was attributed to the flaking of the coating, thus generating more bare surface. As a result, the dominant mechanism on AAFS varies, starting with the adsorption being limited by internal diffusion, then diffusion accompanied by a chemical reaction and later by external diffusion. The external diffusion model applies well in different stages of adsorption, most likely because of attrition generating new grains and hence exposing a new external surface. Therefore, it is not applicable as such over the whole range of data, which is to be expected, because the mixing is not likely to limit external adsorption. The calculated diffusion coefficient is between 8.34 and 9-10-11 m 2s-1, representing molecular weights up to 50kDa.
    DOI/handle
    http://dx.doi.org/10.1089/ees.2009.0290
    http://hdl.handle.net/10576/31239
    Collections
    • Chemical Engineering [‎1194‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video