• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sulfated alginate/polycaprolactone double-emulsion nanoparticles for enhanced delivery of heparin-binding growth factors in wound healing applications

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021
    Author
    Maatouk B.
    Jaffa M.A.
    Karam M.
    Fahs D.
    Nour-Eldine W.
    Hasan, Anwarul
    Jaffa A.A.
    Mhanna R.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Diabetic foot ulcers (DFUs) that are not effectively treated could lead to partial or complete lower limb amputations. The lack of connective tissue growth factor (CTGF) and insulin-like growth factor (IGF-I) in DFUs results in limited matrix deposition and poor tissue repair. To enhance growth factor (GF) availability in DFUs, heparin (HN)-mimetic alginate sulfate/polycaprolactone (AlgSulf/PCL) double emulsion nanoparticles (NPs) with high affinity and sustained release of CTGF and IGF-I were synthesized. The NPs size, encapsulation efficiency (EE), cytotoxicity, cellular uptake and wound healing capacity in immortalized primary human adult epidermal cells (HaCaT) were assessed. The sonication time and amplitude used for NPs synthesis enabled the production of particles with a minimum of 236 � 25 nm diameter. Treatment of HaCaT cells with up to 50 ?g mL?1 of NPs showed no cytotoxic effects after 72 h. The highest bovine serum albumin EE (94.6 %, P = 0.028) and lowest burst release were attained with AlgSulf/PCL. Moreover, cells treated with AlgSulf/CTGF (250 ng mL?1) exhibited the most rapid wound closure compared to controls while maintaining fibronectin synthesis. Double-emulsion NPs based on HN-mimetic AlgSulf represent a novel approach which can significantly enhance diabetic wound healing and can be expanded for applications requiring the delivery of other HN-binding GFs.
    DOI/handle
    http://dx.doi.org/10.1016/j.colsurfb.2021.112105
    http://hdl.handle.net/10576/31253
    Collections
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video