• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancement of mechanical and corrosion resistance properties of electrodeposited NiP-TiC composite coatings

    Thumbnail
    Date
    2021
    Author
    Fayyaz O.
    Khan A.
    Shakoor R.A.
    Hasan, Anwarul
    Yusuf M.M.
    Montemor M.F.
    Rasul S.
    Khan K.
    Faruque M.R.I.
    Okonkwo P.C.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In the present study, the effect of concentration of titanium carbide (TiC) particles on the structural, mechanical, and electrochemical properties of Ni–P composite coatings was investigated. Various amounts of TiC particles (0, 0.5, 1.0, 1.5, and 2.0 g L−1) were co-electrodeposited in the Ni–P matrix under optimized conditions and then characterized by employing various techniques. The structural analysis of prepared coatings indicates uniform, compact, and nodular structured coatings without any noticeable defects. Vickers microhardness and nanoindentation results demonstrate the increase in the hardness with an increasing amount of TiC particles attaining its terminal value (593HV100) at the concentration of 1.5 g L−1. Further increase in the concentration of TiC particles results in a decrease in hardness, which can be ascribed to their accumulation in the Ni–P matrix. The electrochemical results indicate the improvement in corrosion protection efficiency of coatings with an increasing amount of TiC particles reaching to ~ 92% at 2.0 g L−1, which can be ascribed to a reduction in the active area of the Ni–P matrix by the presence of inactive ceramic particles. The favorable structural, mechanical, and corrosion protection characteristics of Ni–P–TiC composite coatings suggest their potential applications in many industrial applications.
    DOI/handle
    http://dx.doi.org/10.1038/s41598-021-84716-6
    http://hdl.handle.net/10576/31254
    Collections
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video