• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fabrication of inorganic alumina particles at nanoscale by a pulsed laser ablation technique in liquid and exploring their protein binding, anticancer and antipathogenic activities

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021
    Author
    Jouya Talaei A.
    Zarei N.
    Hasan, Anwarul
    Haj Bloukh S.
    Edis Z.
    Abbasi Gamasaee N.
    Heidarzadeh M.
    Mahdi Nejadi Babadaei M.
    Shahpasand K.
    Sharifi M.
    Akhatri K.
    Khan S.
    Xue M.
    Falahati M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The interaction of nanoparticles with biological systems can provide useful information about their therapeutic applications. The aluminum nanoparticles (Al2O3 NPs) were synthesized by laser ablation technique and well-characterized by different methods. Fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking studies were employed to evaluate the effect of Al2O3 NPs on the protein structure. Growth inhibitory and apoptotic effects of the Al2O3 NPs against K562 cancer cells and lymphocyte cells were assessed using [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT), flow cytometry, and real time polymerase chain reaction (PCR) assays. The antipathogenic activity of Al2O3 NPs against a diverse range of Gram-negative and Gram-positive pathogens was explored through a disk diffusion method. The characterization techniques determined that the Al2O3 NPs were successfully synthesized in the nanoscales. Intrinsic, 1-anilino-8-naphthalenesulfonate (ANS) and acrylamide fluorescence spectroscopy studies disclosed that Al2O3 NPs can partially change the tertiary structure of human serum albumin (HSA), whereas CD spectroscopy investigation depicted that the secondary structure of HSA remained intact. Molecular docking investigation also manifest that the Al2O3 nano-clusters preferably bind to electrostatic residues. Al2O3 NPs exhibited promising and selective anticancer features through reactive oxygen species (ROS) production, apoptosis induction, and elevation of Bax/Bcl-2 mRNA ratio. Furthermore, the Al2O3 NP showed a remarkable antibacterial activity against both Gram-negative and Gram-positive pathogens. In conclusion, it may be suggested that the synthesized Al2O3 NPs can be integrated in the development of anticancer and antipathogenic agents.
    DOI/handle
    http://dx.doi.org/10.1016/j.arabjc.2020.102923
    http://hdl.handle.net/10576/31278
    Collections
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video