• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hydrothermal method-based synthesized tin oxide nanoparticles: Albumin binding and antiproliferative activity against K562 cells

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021
    Author
    Ahmadabad L.E.
    Kalantari F.S.
    Liu H.
    Hasan, Anwarul
    Gamasaee N.A.
    Edis Z.
    Attar F.
    Ale-Ebrahim M.
    Rouhollah F.
    Babadaei M.M.N.
    Sharifi M.
    Shahpasand K.
    Akhtari K.
    Falahati M.
    Cai Y.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The interaction of nanoparticles with protein and cells may provide important information regarding their biomedical implementations. Herein, after synthesis of tin oxide (SnO2) nanoparticles by hydrothermal method, their interaction with human serum albumin (HSA) was evaluated by multispectroscopic and molecular docking (MD) approaches. Furthermore, the selective antiproliferative impact of SnO2 nanoparticles against leukemia K562 cells was assessed by different cellular assays, whereas lymphocytes were used as control cells. TEM, DLS, zeta potential and XRD techniques showed that crystalline SnO2 nanoparticles have a size of less than 50 nm with a good colloidal stability. Fluorescence and CD spectroscopy analysis indicated that the HSA undergoes some slight conformational changes after interaction with SnO2 nanoparticles, whereas the secondary structure of HSA remains intact. Moreover, MD outcomes revealed that the charged residues of HSA preferentially bind to SnO2 nanoclusters in the binding pocket. Antiproliferative examinations displayed that SnO2 nanoparticles can selectively cause the mortality of K562 cells through induction of cell membrane leakage, activation of caspase-9, -8, -3, down regulation of Bcl-2 mRNA, the elevation of ROS level, S phase arrest, and apoptosis. In conclusion, this data may indicate that SnO2 nanoparticles can be used as promising particles to be integrated into therapeutic platforms.
    DOI/handle
    http://dx.doi.org/10.1016/j.msec.2020.111649
    http://hdl.handle.net/10576/31279
    Collections
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video