• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The effects of nickel oxide nanoparticles on structural changes, heme degradation, aggregation of hemoglobin and expression of apoptotic genes in lymphocytes

    Thumbnail
    Date
    2020
    Author
    Gamasaee N.A.
    Muhammad H.A.
    Tadayon E.
    Ale-Ebrahim M.
    Mirpour M.
    Sharifi M.
    Salihi A.
    Shekha M.S.
    Alasady A.A.B.
    Aziz F.M.
    Akhtari K.
    Hasan, Anwarul
    Falahati M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Nickel oxide nanoparticles (NiO NPs) have received great interests in medical and biotechnological applications. However, their adverse impacts against biological systems have not been well-explored. Herein, the influence of NiO NPs on structural changes, heme degradation and aggregation of hemoglobin (Hb) was evaluated by UV-visible (Vis) spectroscopy, circular dichroism (CD) spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM), and molecular modeling investigations. Also, the morphological changes and expression of Bax/Bcl-2 mRNA in human lymphocyte cell exposed to NiO NPs were assayed by DAPI staining and quantitative real-time PCR (qPCR), respectively. The UV-Vis study depicted that NiO NPs resulted in the displacement of aromatic residues and heme groups and production of the pro-aggregatory species. Intrinsic and Thioflavin T (ThT) fluorescence studies revealed that NiO NPs resulted in heme degradation and amorphous aggregation of Hb, respectively, which the latter result was also confirmed by TEM study. Moreover, far UV-CD study depicted that NiO NPs lead to substantial secondary structural changes of Hb. Furthermore, near UV-CD displayed that NiO NPs cause quaternary conformational changes of Hb as well as heme displacement. Molecular modelling study also approved that NiO NPs resulted in structural alterations of Hb and heme deformation. Moreover, morphological and genotoxicity assays revealed that the DNA fragmentation and expression ratio of Bax/Bcl-2 mRNA increased in lymphocyte cells treated with NiO NPs for 24hr. In conclusion, this study indicates that NiO NPs may affect the biological media and their applications should be limited. Communicated by Ramaswamy H. Sarma.
    DOI/handle
    http://dx.doi.org/10.1080/07391102.2019.1662850
    http://hdl.handle.net/10576/31300
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video