• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nanosilver loaded GelMA hydrogel for antimicrobial coating of biomedical implants

    Thumbnail
    Date
    2015
    Author
    El Hajj, F.
    Hasan, Anwarul
    Nakhleh, J.
    Osta, M.
    Darwish, G.
    Karam, P.
    Nassereddine M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Bacterial adhesion to the surface of implants in surgical procedures represents a major problem in surgeries, as it incurs high medical costs and could lead to postoperative infections. Different strategies have been developed to decrease the incidence of bacterial infections related medical devices failure. One approach is the modification of the surface of the devices using antibacterial coatings designed to be non-fouling, thus minimizing microbial adhesion. The ability of silver nanoparticles to destroy infectious micro-organisms makes them an attractive candidate for use against "super-bugs" resistant to antibiotics. In this work, we develop a silver nanoparticles loaded methacrylated gelatin (GelMA) hydrogel for antimicrobial coating of biomedical implants. Silver nanoparticles of different sizes and concentrations were synthesized using citrate and ascorbic acid reduction in glycerol water mixtures which were incorporated in an Ultraviolet (UV)-photocrosslinkable GelMA hydrogel. Analysis and characterization of the obtained hydrogels were performed through scanning electron microscopy (SEM), and UV-visible spectrophotometry. The release of silver nanoparticles from the crosslinked hydrogel was quantified using UV spectroscopy. The cell viability was investigated on Rat Aortic Smooth Muscle Cells (RASMC) using different concentrations and sizes of silver nanoparticle loaded GelMA hydrogel. The antibacterial activities of the newly developed hydrogel coating was tested on two different types of bacteria, gram positive Staphylococcus aureus and gram negative Escherichia coli by analyzing the growth of the bacterial cells following treatment with different concentration and size of silver nanoparticles. Experimental results revealed that incorporation of silver nanoparticles in GelMA hydrogel was successfully performed and the release of silver nanoparticles over time from the developed hydrogel to the pathogenic environment was successfully achieved which reduced bacterial growth without any negative effect on cells.
    DOI/handle
    http://dx.doi.org/10.1109/ICABME.2015.7323284
    http://hdl.handle.net/10576/31337
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video