• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Strategies to Enhance ZnO Photocatalyst's Performance for Water Treatment: A Comprehensive Review

    Thumbnail
    Date
    2022
    Author
    Hezam A.
    Drmosh Q.A.
    Ponnamma D.
    Bajiri M.A.
    Qamar M.
    Namratha K.
    Zare M.
    Nayan M.B.
    Onaizi S.A.
    Byrappa K.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Despite the photocatalytic organic pollutant degradation using ZnO started in 1910?1911, many challenges are still ahead, and several critical issues have to be addressed. Large band gap, and short life-time of photogenerated electrons and holes are critical issues negatively affect the photocatalytic activity of ZnO. Various approaches have been introduced to overcome these issues including intrinsic doping, extrinsic doping, and heterostructure. This review introduces unique and deep insights into tuning of the photocatalytic activity of ZnO. It starts by description of how to tune the photocatalytic activity of pristine ZnO through tuning its morphology, surface area, exposed face, and intrinsic defects. Afterward, the review explains how the Z-scheme approach succeed to address the redox weakened issue of heterojunction approach. In general, this review provides a clear image that helps the researcher to tune the photocatalytic activity of pristine ZnO and its heterostructure.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124378115&doi=http://dx.doi.org/10.1002%2ftcr.202100299&partnerID=40&md5=c759a738206ba58e2ec2139838f5c251
    DOI/handle
    http://dx.doi.org/10.1002/tcr.202100299
    http://hdl.handle.net/10576/31729
    Collections
    • Materials Science & Technology [‎337‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video