• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CeO2 Nanostructures Enriched with Oxygen Vacancies for Photocatalytic CO2 Reduction

    Thumbnail
    Date
    2020
    Author
    Hezam A.
    Namratha K.
    Drmosh Q.A.
    Ponnamma D.
    Wang J.
    Prasad S.
    Ahamed M.
    Cheng C.
    Byrappa K.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Synthesizing nanomaterials at the expense of solar energy and the associated energy generation have utmost significance as far as environmental sustainability is concerned. Here, sunlight-assisted combustion synthesis of a nanoscale metal oxide (CeO2) is reported. The sunlight, as a clean renewable energy source, is used for the first time to initiate the exothermic combustion reaction and to introduce oxygen vacancies into the CeO2. The current synthesis setup controls the environmental problems of gas evolution, usually associated with the conventional method, and thus maintains the green pathway. Additionally, for comparison, CeO2 nanoparticles are also synthesized using the conventional solution combustion method (CeO2-CSC). It is found that the CeO2 synthesized using sunlight-assisted combustion (CeO2-SAC) possesses a smaller particle size, a higher concentration of oxygen vacancies, and a narrower band gap than the CeO2-CSC. Therefore, CeO2-SAC demonstrates higher photocatalytic performance in converting CO2 to CH3OH (0.702 ?mol h-1 g-1) than the CeO2-CSC (0.397 ?mol h-1 g-1), thus pointing toward environmentally benign photocatalytic CO2 reduction.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078792997&doi=http://dx.doi.org/10.1021%2facsanm.9b01833&partnerID=40&md5=6cc2cceb4a0c4213ba1e69357bf1f7b9
    DOI/handle
    http://dx.doi.org/10.1021/acsanm.9b01833
    http://hdl.handle.net/10576/31735
    Collections
    • Materials Science & Technology [‎337‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video