• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of a novel tailored ion-imprinted polymer for recovery of lithium and strontium from reverse osmosis concentrated brine

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Development of a novel tailored ion-imprinted polymer for recovery of.pdf (5.975Mb)
    Date
    2022-08-15
    Author
    Alshuiael, Sara M.
    Al-Ghouti, Mohammad A.
    Metadata
    Show full item record
    Abstract
    This study aims to prepare ion-imprinted polymer (IIP) with the benefit of a metal-based sorbent, which is fabricated to selectively adsorb lithium (Li+) from aqueous solutions, and in an attempt to remove strontium (Sr2+). The adsorption processes were carried out at different pH values, initial concentrations, and temperatures, to optimize the experimental conditions, with the use of response surface methodology (RSM). The seawater reverse osmosis (SWRO) brine was physically and chemically characterized, and the physicochemical characterization of the prepared IIP before and after adsorption was also performed using different spectroscopic methods. The adsorption capacity for Li+ and Sr2+ from SWRO brine was evaluated, and the reusability of IIP was investigated using adsorption–desorption cycles. The results showed that the IIP was efficient to remove Li+ but not Sr2+, and it follows Freundlich adsorption isotherms models. The analysis revealed a significant concentration of minerals in the brine sample It also revealed a low concentration of trace metals, like Ba (0.16 mg/L), Zn (0.845 mg/L), Fe (1.31 mg/L), Cu (1.165 mg/L), Pb (1.505 mg/L), and V (3.88 mg/L), except Li and Sr which shows a higher concentration of 43.32 mg/L and 16.93 mg/L respectively. pH 10 was selected to be the optimum pH for the adsorption isotherm experiments, as it was the highest efficient pH to adsorb Li+ and Sr2+. The thermodynamics study revealed that the adsorption of Li+ on the IIP favored exothermic conditions. It was noticed that the maximum adsorption capacity (Qm) was increased as the temperature rise from 714.3 mg/g at 25 °C to 2500 mg/g at 45 °C. The Li+ desorption results show that 94.03% − 94.71% of the ions were recovered, while the Sr2+ desorption results show that 96.35% − 96.56% of the ions were recovered. The efficiency of IIP to adsorb lithium and strontium from brine shows that the adsorption removal% of Li+ was between 84.21% and 84.68%, while the adsorption removal% of Sr2+ was between 3.83% and 10%. The cost analysis for IIP preparation was 2 USD/g.
    URI
    https://www.sciencedirect.com/science/article/pii/S1383586622008772
    DOI/handle
    http://dx.doi.org/10.1016/j.seppur.2022.121320
    http://hdl.handle.net/10576/31943
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video