• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    INTERPRETABLE DEEP LEARNING MODELS FOR PREDICTION OF CLINICAL OUTCOMES FROM ELECTRONIC HEALTH RECORDS

    Thumbnail
    View/Open
    Rawan Alsaad_ OGS Approved Dissertation.pdf (5.439Mb)
    Date
    2022-06
    Author
    ALSAAD, RAWAN TAYSEER
    Metadata
    Show full item record
    Abstract
    The rapid adoption of electronic health records (EHRs) has generated tremendous amounts of valuable clinical data on complex diseases and health trajectories. Yet, achieving successful secondary use of this EHR data for expanding our knowledge about diseases, expediting scientific discoveries in medicine, and facilitating clinical decision-making has remained challenging, owing to the complexity and data quality issues of these EHR data. Artificial intelligence, specifically deep learning, presents a promising approach for analyzing this rich EHR data, represented as a series of timestamped multivariate data packed in irregular intervals. Deep learning-based predictive modeling with longitudinal EHR data offers a great promise for accelerating personalized medicine, enabling disease prevention, better informing clinical decision making, and reducing healthcare costs. However, employing deep learning on EHR data for personalized prediction of clinical outcomes requires coping with numerous issues simultaneously. In this thesis, we focus on addressing three important challenges: data heterogeneity, data irregularity, and model interpretability. We utilize state of the art deep learning techniques and modern machine learning methods to develop accurate and interpretable predictive models using EHR data. Specifically, we demonstrate how temporal clinical data contained in EHRs can be harnessed for providing patient specific predictions and interpretations for several clinical outcomes. We focus on two aspects: 1) code level and visit-level interpretations for predicted outcomes using recurrent neural networks (RNNs), attention mechanism, and contextual decomposition interpretation method, and 2) leveraging the non-stationarity characteristics in EHR data into the predictive models using self-attention mechanism and kernels approximation technique. Our proposed EHR-based deep learning models demonstrate improved performance in terms of predictive accuracy and interpretability on multiple clinical prediction tasks, compared to existing work in this area. These tasks include preterm birth prediction, school-age asthma prediction, and predicting the set of diagnosis codes in the next visit. Such models have a great potential to assist healthcare professionals in making decisions, which are not only dependent on the clinician's clinical knowledge and expertise, but also based on personalized and precise insights about future patient outcomes.
    DOI/handle
    http://hdl.handle.net/10576/32173
    Collections
    • Computing [‎103‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video