• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of Metastructures for Targeted Low-Frequency Vibration Suppression in Plates

    Thumbnail
    View/Open
    s42417-022-00614-9.pdf (2.244Mb)
    Date
    2022
    Author
    Ghachi, Ratiba F.
    Mohamed, Ahmed S.
    Renno, Jamil
    Alnahhal, Wael
    Metadata
    Show full item record
    Abstract
    Purpose We present an approach that combines finite element analysis and genetic algorithms to find the optimal configuration of local resonators created in the host structure to suppress their vibration in a target low-frequency range. Such local resonators are indeed metastructures that alter the wave propagation in the host structure, thereby attenuating their vibration. Methods To demonstrate the approach, we cutout zigzag resonators in a thin aluminium plate that is subjected to base-excitations. The thin plate and the zigzag cutouts are modelled using the finite element method, and the optimal location and optimal tip mass of the zigzag cutouts are obtained using genetic algorithms through iterative simulations. Two case studies are considered, and the fitness function used in the optimization problem is the plate’s root mean square of vibration in a specific low-frequency range. In the first case, the plate has two aligned zigzag cutouts. In this case, the objective is to find the optimal linear location and tip masses of the two zigzag cutouts. In the second case, the plate also has two zigzag cutouts, but their linear and transverse locations can vary along with the respective tip masses. The two optimal specimens are manufactured and tested experimentally. Results Numerical results were compared to experimental results which demonstrate that the proposed approach is reliable and can be used to tune the band gap of plates, thereby maximizing the vibration attenuation in the target frequency range. Conclusion Genetic algorithms can be used along with finite element analysis and zigzag cutouts to tune the band gap of plates subjected to base-excitations. The approach can be extended to plates/structures with other types of excitations and boundary conditions.
    DOI/handle
    http://dx.doi.org/10.1007/s42417-022-00614-9
    http://hdl.handle.net/10576/33436
    Collections
    • Civil and Environmental Engineering [‎861‎ items ]
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video