• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A predictive control strategy for electrochromic glazing to balance the visual and thermal environmental requirements: Approach and energy-saving potential assessment

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022-07
    Author
    Sun, Yuying
    Hao, Yingying
    Wang, Dan
    Deng, Shiming
    Qi, Haoran
    Xue, Peng
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Electrochromic (EC) glazing provides a promising solution to actively adjusting the sunlight and radiant heat through windows in response to building visual and thermal environmental requirements, and control strategies play a critical role in the application of EC technology in buildings. However, there is a conflict between the visual and thermal environmental requirements for EC regulation during a cooling season. To solve this problem, this paper developed a predictive control strategy for EC glazing. It was achieved based on two theoretical models which could predict the energy performance of EC glazing at different tint states, including the solar radiation heat transmitted through the glazing and lighting energy consumption. The optimum glazing state was determined based on real-time minimized energy consumption. Study results showed that the predictive control strategy outperformed the rule-based control strategy, with percentage energy saving of an office room in Beijing, China from 8.04% to 12.78% over an entire cooling season. In addition, the paper evaluated the energy-saving of using EC glazing under the predictive control strategy in 28 Chinese cities. The results indicated that EC glazing was highly applicable in most of cities with energy saving from 2.35 kWh/m2 to 5.04 kWh/m2 over an entire cooling season.
    DOI/handle
    http://dx.doi.org/10.1016/j.renene.2022.05.093
    http://hdl.handle.net/10576/33543
    Collections
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video