• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impact of electric potential and magnetic fields on power generation in microbial fuel cells treating food waste leachate

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2214714420307182-main.pdf (3.286Mb)
    Date
    2021-04-30
    Author
    Gunda, Mohanakrishna
    Kondaveeti, Sanath
    Krishna Bharat, L.
    Modigunta, Jeevan Kumar Reddy
    Abu-Reesh, Ibrahim M.
    Al-Raoush, Riyadh I.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Sustainable bioelectrogenesis was evaluated by oxidizing the organics of food waste leachate (FWL) under the influence of magnetic field (MF) and short term applied voltage (electric potential, EP). Adaptation of MF (20–220 m T) and EP (100−500 mV) had enhanced the performance of MFC in terms of power generation and reduction of organic in FWL. The best performance of MFC was noted with a MF at 220 m T and EP at 500 mV. MFC under the influence of applied EP (100−500 mV), the power generation was increased from 493 mW/m2 to 832 mW/m2. During this operation, the chemical oxygen demand removal (CODr) was also increased from 51.3 % to 80.4 %. Whereas the control MFC (MFC-C) had exhibited a maximum power generation and CODr of 224 mW/m2 and 36.3 %, respectively. MFC with MF has showed an increase in power density from 480 mW/m2 to 811 mW/m2. MFCs at 220 m T and 500 mV has exhibited, 262 % and 271 % increase in power density over control, respectively. Adaptation of MFC under the EP and MF were found to be beneficial in treating FWL which has high strength organic content.
    URI
    https://www.sciencedirect.com/science/article/pii/S2214714420307182
    DOI/handle
    http://dx.doi.org/10.1016/j.jwpe.2020.101841
    http://hdl.handle.net/10576/33684
    Collections
    • Chemical Engineering [‎1272‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video