• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integrated bioelectrochemical platforms

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    El Mekawy, Ahmed
    Hegab, Hanaa M.
    Mohanakrishna, Gunda
    Pant, Deepak
    Wang, Huanting
    Metadata
    Show full item record
    Abstract
    Energy and water are intrinsically linked, as all energy sources need water for their production processes, and at the same time, water resources require energy to be available for human consumption. One of the promising technologies that is concerned with dealing with water/energy challenges is bioelectrochemical systems (BESs), which use microbial cells to transform the chemical energy stowed in biodegradable organic materials to direct electric energy and chemicals. The generated current is utilized to develop several applications, e.g., power production (microbial fuel cells), water desalination (microbial desalination cells), hydrogen (microbial electrolysis cells) or chemicals synthesis (microbial electrosynthesis cells). However, these technologies are still in their early-stage of development and are confronted with several challenges. Integration with other technologies, e.g., capacitive deionization and membrane bioreactor, was proposed to overcome these challenges. This chapter provides a broad evaluation of all the recently developed BES integrated systems, with focus on their constructions and performances. 2019 Elsevier Inc. All rights reserved.
    DOI/handle
    http://dx.doi.org/10.1016/B978-0-444-64052-9.00043-1
    http://hdl.handle.net/10576/33702
    Collections
    • Chemical Engineering [‎1194‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video