• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enzymatic Electrosynthesis Toward Value Addition

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019-12-31
    Author
    Gunda, Mohanakrishna
    Kondaveeti, Sanath
    Desale, Pridhviraj
    El Mekawy, Ahmed
    Abu-Reesh, Ibrahim M.
    Metadata
    Show full item record
    Abstract
    Utilization of enzymes as biocatalyst found to have specific advantages over whole-cell bacterial biocatalyst in electrochemical systems. The process of enzymatic catalysis in association with electrodes was found to have several advantages for the specific product synthesis, and these systems were termed as enzyme-catalyzed electrosynthesis systems (EESs). Conversion of carbon dioxide (CO2) to produce biofuels and chemicals through EES is found deliver bioprocesses future generations. The present chapter is focused on the fundamental science of EESs to produce biofuel and biochemicals. The chapter also presents the detailed discussion on anodic and cathodic reactions and the electrode materials involved in the electroenzymatic catalysis. It was found to have influence of enzyme electrode compatibility, application of nanomaterials for the improved enzymatic electrocatalysis, and types of electron transfer mechanism involved in the enzymatic electrochemical systems. This chapter provides a detailed evaluation of all the recently developed enzymatic electrosynthesis systems with prime focus on the factors influencing overall performance and its applications in sustainable development.
    URI
    https://www.sciencedirect.com/science/article/pii/B978044464052900039X
    DOI/handle
    http://dx.doi.org/10.1016/B978-0-444-64052-9.00039-X
    http://hdl.handle.net/10576/33706
    Collections
    • Chemical Engineering [‎1194‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video