• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Halloysite nanotube and chitosan polymer composites: Physicochemical and drug delivery properties

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022-06-01
    Author
    Paul, A.
    Paul, Alapan
    Augustine, Robin
    Hasan, Anwarul
    Zahid, Alap Ali
    Thomas, Sabu
    Agatemor, Christian
    Ghosal, Kajal
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Advancement in healthcare requires sophisticated and safe drug delivery systems. An ideal drug delivering system should be non-toxic, therapeutically inert, and be able to deliver a wide range of drugs. Here, we report halloysite nanotubes (HNTs) and its nanocomposite with chitosan for the delivery of diclofenac. The nanomaterials were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM). Also, water absorption studies, cytotoxicity studies, and in vitro diffusion studies were carried out to ascertain the behaviour of the nanomaterials. SEM confirmed tubular morphology of HNTs and suggest drug loading within nanotubes. Further, XRD diffraction patterns of diclofenac and HNTs in drug-loaded nanotubes and composites confirmed loading of drug in nanotubes at the first step of processing and encapsulation within composites in subsequent step. FTIR showed very few drug bands within drug loaded nanotubes and composite, confirming encapsulation of the drug. Nanocomposite films were found to sustain drug release for a longer duration. The drug sustaining phenomenon was confirmed via in vitro diffusion studies and water absorption studies. Cytotoxicity study performed by MTT assay suggests biocompatibility of HNTs nanomaterials. Overall, the studies imply that HNTs could be exploited as a biocompatible nanomaterials to deliver drugs that demand sustained therapeutic action.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85129771673&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.jddst.2022.103380
    http://hdl.handle.net/10576/33806
    Collections
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video