• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A review of g-C3N4 based catalysts for direct methanol fuel cells

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022
    Author
    Yuda, Afdhal
    Kumar, Anand
    Metadata
    Show full item record
    Abstract
    Direct methanol fuel cells (DMFC) possess numerous advantages for powering portable mobile devices. However, there are still major challenges in their development and commercialization that originates from the anode catalyst responsible for methanol oxidation reaction. This has motivated researchers to find a cost effective and durable catalyst material for methanol oxidation. Recently, carbon-based 2-D graphitic carbon nitride (g-C3N4) has been found to have good potentials to catalyse alcohol oxidation reactions in fuel cells. This review provides a summarized information of previously developed g-C3N4-containing-electrocatalysts based on the active sites present (e.g., non-metals, noble metals, and non-noble metals) for methanol electro-oxidation to compare their electrocatalytic performance. It also consists of brief examination of their structure, description of different synthesis methods and post-synthesis treatments, and evaluation of their properties that contributes to their resulting performance. The review then concludes with the details of challenges and possible solutions that enable DMFC to be a reliable source of energy in the future.
    DOI/handle
    http://dx.doi.org/10.1016/j.ijhydene.2021.01.080
    http://hdl.handle.net/10576/34039
    Collections
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video