• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Human Nutrition
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Human Nutrition
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Risk prediction models for incident type 2 diabetes in Chinese people with intermediate hyperglycemia: a systematic literature review and external validation study

    Thumbnail
    View/Open
    Main article (1.156Mb)
    Date
    2022-09-13
    Author
    Xu, Shishi
    Coleman, Ruth L.
    Wan, Qin
    Gu, Yeqing
    Meng, Ge
    Song, Kun
    Shi, Zumin
    Xie, Qian
    Tuomilehto, Jaakko
    Holman, Rury R.
    Niu, Kaijun
    Tong, Nanwei
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    BACKGROUND: People with intermediate hyperglycemia (IH), including impaired fasting glucose and/or impaired glucose tolerance, are at higher risk of developing type 2 diabetes (T2D) than those with normoglycemia. We aimed to evaluate the performance of published T2D risk prediction models in Chinese people with IH to inform them about the choice of primary diabetes prevention measures. METHODS: A systematic literature search was conducted to identify Asian-derived T2D risk prediction models, which were eligible if they were built on a prospective cohort of Asian adults without diabetes at baseline and utilized routinely-available variables to predict future risk of T2D. These Asian-derived and five prespecified non-Asian derived T2D risk prediction models were divided into BASIC (clinical variables only) and EXTENDED (plus laboratory variables) versions, with validation performed on them in three prospective Chinese IH cohorts: ACE (n = 3241), Luzhou (n = 1333), and TCLSIH (n = 1702). Model performance was assessed in terms of discrimination (C-statistic) and calibration (Hosmer-Lemeshow test). RESULTS: Forty-four Asian and five non-Asian studies comprising 21 BASIC and 46 EXTENDED T2D risk prediction models for validation were identified. The majority were at high (n = 43, 87.8%) or unclear (n = 3, 6.1%) risk of bias, while only three studies (6.1%) were scored at low risk of bias. BASIC models showed poor-to-moderate discrimination with C-statistics 0.52-0.60, 0.50-0.59, and 0.50-0.64 in the ACE, Luzhou, and TCLSIH cohorts respectively. EXTENDED models showed poor-to-acceptable discrimination with C-statistics 0.54-0.73, 0.52-0.67, and 0.59-0.78 respectively. Fifteen BASIC and 40 EXTENDED models showed poor calibration (P < 0.05), overpredicting or underestimating the observed diabetes risk. Most recalibrated models showed improved calibration but modestly-to-severely overestimated diabetes risk in the three cohorts. The NAVIGATOR model showed the best discrimination in the three cohorts but had poor calibration (P < 0.05). CONCLUSIONS: In Chinese people with IH, previously published BASIC models to predict T2D did not exhibit good discrimination or calibration. Several EXTENDED models performed better, but a robust Chinese T2D risk prediction tool in people with IH remains a major unmet need.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85137837920&origin=inward
    DOI/handle
    http://dx.doi.org/10.1186/s12933-022-01622-5
    http://hdl.handle.net/10576/34482
    Collections
    • Human Nutrition [‎435‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video