• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cellulose microfibers (CMFs) as a smart carrier for autonomous self-healing in epoxy coatings

    Thumbnail
    Date
    2020
    Author
    Nawaz, Muddasir
    Habib, Sehrish
    Khan, Adnan
    Shakoor, R. A.
    Kahraman, Ramazan
    Metadata
    Show full item record
    Abstract
    Synthesized cellulose microfibers (CMFs) were used as a smart carrier for the loading of inhibitor-dodecylamine (DOC) and inhibitor/self-healing polyethyleneimine (PEI). The loaded CMFs were thoroughly dispersed into the polymeric matrix to develop smart self-healing epoxy coatings. Field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA) confirm the successful loading of inhibitors and self-healing agents on CMFs. UV-vis analysis indicates the pH sensitivity and time-dependent release of the loaded inhibitor. The inhibition mechanism and chemical interaction of the protective surface film layer on steel elucidated their role in autonomous self-healing. The electrochemical impedance spectroscopy (EIS) measurements for a scratched coating sample demonstrate the increase in the impedance value for the smart coatings as compared to the reference coatings. This improvement is attributed to the efficient release of corrosion inhibitor and the development of a stable, protective film due to the self-healing effect. The synergetic effect of DOC and PEI revealed the self-healing ability of a smart epoxy coating.
    DOI/handle
    http://dx.doi.org/10.1039/c9nj06436b
    http://hdl.handle.net/10576/34839
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video