• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Compositional engineering of the pi-conjugated small molecular VOPcPhO : Alq3 complex to boost humidity sensing

    Thumbnail
    View/Open
    c7ra02525d.pdf (1.403Mb)
    Date
    2017
    Author
    Fatima, Noshin
    Aziz, Fakhra
    Ahmad, Zubair
    Najeeb, M. A.
    Azmeer, M. I.
    Karimov, Kh. S.
    Ahmed, M. M.
    Basheer, S.
    Shakoor, R. A.
    Sulaiman, K.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This study exhibits a solution-processed organic semiconductor humidity sensor based on vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO), tris-(8-hydroxy-quinoline)aluminum (Alq3), and their composites. Compositional engineering of the VOPcPhO : Alq3 complex was performed to develop a sensitive humidity sensor with a linear response. Thin films of VOPcPhO, Alq3, and composites were spin-coated over pre-deposited aluminum (Al) electrodes, whereas the other electrodes were deposited through a thermal evaporation technique. Both capacitive and resistive responses were measured as a function of different relative humidity levels. Morphological and structural properties of the organic thin films were characterized by atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FTIR). Compared to the VOPcPhO and Alq3 stand-alone sensors, the VOPcPhO : Alq3 composite-based sensor demonstrated superior performance with significantly improved sensing parameters, highlighting unique advantages of the low-molecular composite-based thin film organic humidity sensors.
    DOI/handle
    http://dx.doi.org/10.1039/c7ra02525d
    http://hdl.handle.net/10576/34847
    Collections
    • Center for Advanced Materials Research [‎1610‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video