• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Thermal insitu analyses of multicomponent pyrophosphate cathodes materials

    Thumbnail
    View/Open
    101108941_2.pdf (593.7Kb)
    Date
    2015
    Author
    Shakoor, R.A.
    Kahraman, Ramazan
    Raja, Arsalan A.
    Metadata
    Show full item record
    Abstract
    Development of secondary batteries based on abundant and inexpensive elements are vital. Amongvarious alternative choices, sodium-ion batteries (NIBs) are promising because of plentiful resourcesand low costs of sodium metal. Different types of cathode materials for NIBs have been designed andstudied to meet the challenging requirements. Among them pyrophosphate cathodes have shownpromising electrochemical performance and thermal stability in sodium ion batteries (SIBs). In thepresent study, we report synthesis and thermal behavior of a novel Na2Fe0.33Mn0.33Co0.33P2O7 cathodematerial developed for sodium rechargeable batteries. The material was developed through solid stateprocess. The structural analysis of Na2Fe0.33Mn0.33Co0.33P2O7 revealed that the substitution ofmulticomponent transition metals have achieved triclinic crystal structure (P1 space group). TGA/DTAand thermal in-situ XRD analyses (25~550oC) confirm decent thermal stability of this material up to550oC even in the desodiated state with negligible weight loss (5%). Owing to its promising thermalstability, Na2Fe0.33Mn0.33Co0.33P2O7, would be an attractive cathode for sodium ion batteries.
    DOI/handle
    http://hdl.handle.net/10576/34854
    Collections
    • Center for Advanced Materials Research [‎1485‎ items ]
    • Chemical Engineering [‎1196‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video