• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enabling Efficient Scheduling in Large-Scale UAV-Assisted Mobile-Edge Computing via Hierarchical Reinforcement Learning

    Thumbnail
    Date
    2022-05-15
    Author
    Ren, Tao
    Niu, Jianwei
    Dai, Bin
    Liu, Xuefeng
    Hu, Zheyuan
    Xu, Mingliang
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Due to the high maneuverability and flexibility, unmanned aerial vehicles (UAVs) have been considered as a promising paradigm to assist mobile edge computing (MEC) in many scenarios including disaster rescue and field operation. Most existing research focuses on the study of trajectory and computation-offloading scheduling for UAV-assisted MEC in stationary environments, and could face challenges in dynamic environments where the locations of UAVs and mobile devices (MDs) vary significantly. Some latest research attempts to develop scheduling policies for dynamic environments by means of reinforcement learning (RL). However, as these need to explore in high-dimensional state and action space, they may fail to cover in large-scale networks where multiple UAVs serve numerous MDs. To address this challenge, we leverage the idea of 'divide-and-conquer' and propose HT3O, a scalable scheduling approach for large-scale UAV-assisted MEC. First, HT3O is built with neural networks via deep RL to obtain real-time scheduling policies for MEC in dynamic environments. More importantly, to make HT3O more scalable, we decompose the scheduling problem into two-layered subproblems and optimize them alternately via hierarchical RL. This not only substantially reduces the complexity of each subproblem, but also improves the convergence efficiency. Experimental results show that HT3O can achieve promising performance improvements over state-of-the-art approaches.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85103884869&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2021.3071531
    http://hdl.handle.net/10576/34955
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video