• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Malware Classification Based on Multilayer Perception and Word2Vec for IoT Security

    Thumbnail
    View/Open
    Malware Classification Based on Multilayer Perception and Word2Vec for IoT Security.pdf (4.442Mb)
    Date
    2022-02-01
    Author
    Qiao, Yanchen
    Zhang, Weizhe
    Du, Xiaojiang
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    With the construction of smart cities, the number of Internet of Things (IoT) devices is growing rapidly, leading to an explosive growth of malware designed for IoT devices. These malware pose a serious threat to the security of IoT devices. The traditional malware classification methods mainly rely on feature engineering. To improve accuracy, a large number of different types of features will be extracted from malware files in these methods. That brings a high complexity to the classification. To solve these issues, a malware classification method based on Word2Vec and Multilayer Perception (MLP) is proposed in this article. First, for one malware sample, Word2Vec is used to calculate a word vector for all bytes of the binary file and all instructions in the assembly file. Second, we combine these vectors into a 256x256x2-dimensional matrix. Finally, we designed a deep learning network structure based on MLP to train the model. Then the model is used to classify the testing samples. The experimental results prove that the method has a high accuracy of 99.54%.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85119209184&origin=inward
    DOI/handle
    http://dx.doi.org/10.1145/3436751
    http://hdl.handle.net/10576/35020
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video