• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    QDRL: QoS-Aware Deep Reinforcement Learning Approach for Tor's Circuit Scheduling

    Thumbnail
    Date
    2022-01-01
    Author
    Basyoni, Lamiaa
    Erbad, Aiman
    Mohamed, Amr
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    Tor is a popular anonymity network adopted by more than two million users to preserve their privacy. Tor was mainly developed as a low-latency network to support interactive web browsing and messaging applications. However, bandwidth acquisitive applications such as BitTorrent consume a considerable percentage of Tor traffic. This results in an unfair allocation of the available bandwidth and significant degradation in the Quality-of-service (QoS) delivered to users. This paper presents a QoS-aware deep reinforcement learning approach for Tor's circuit scheduling (QDRL). We propose a design that coalesces the two scheduling levels originally presented in Tor and addresses it as a single resource allocation problem. We use the QoS requirements of different applications to set the weight of active circuits passing through a relay. Furthermore, we propose a set of approaches to achieve the optimal trade-off between system fairness and efficiency. We designed and implemented a reinforcement-learning-based scheduling approach (TRLS), a convex-optimization-based scheduling approach (CVX-OPT), and an average-rate-based proportionally fair heuristic (AR-PF). We also compare the proposed approaches with basic heuristics and with the implemented scheduler in Tor. We show that our reinforcement-learning-based approach (TRLS) achieved the highest QoS-aware fairness level with a resilient performance to the changes in an environment with a dynamic nature, such as the Tor network.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85131717289&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TNSE.2022.3179569
    http://hdl.handle.net/10576/35172
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video