• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Towards Secure IoT Networks in Healthcare Applications: A Game Theoretic Anti-Jamming Framework

    Thumbnail
    Date
    2022-01-01
    Author
    Gouissem, A.
    Abualsaud, K.
    Yaacoub, E.
    Khattab, T.
    Guizani, M.
    Metadata
    Show full item record
    Abstract
    The internet of Things (IoT) is used to interconnect a massive number of heterogeneous resource constrained smart devices. This makes such networks exposed to various types of malicious attacks. In particular, jamming attacks are among the most common harmful attacks to IoT networks. Therefore, an anti jamming power allocation strategy is first proposed in this paper for health monitoring IoT networks by exploiting game theory to minimize the worst case jamming effect under multi channel fading. This strategy uses an iterative algorithm based on gradient descent to identify the Nash Equilibrium (NE) of the game. An artificial neural network model is also proposed to accelerate the convergence of the algorithm making it more suitable for IoT networks. Furthermore, novel data population, extension and balancing techniques are proposed to enhance the efficiency of the proposed strategy in combating jamming attacks even for network configurations that were never used in the training phase. In addition, time and spatial diversity are exploited using a heterogeneous iterative algorithm to enhance the security of the network.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85129577530&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2022.3170382
    http://hdl.handle.net/10576/35228
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video