• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Demand-Driven Incremental Deployment Strategy for Edge Computing in IoT Network

    Thumbnail
    Date
    2022-01-01
    Author
    Ren, Wei
    Sun, Yan
    Luo, Hong
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    Edge Computing brings great opportunities to enable the Internet of Things (IoT) vision. But the physical edge server deployment problem still poses a major challenge, which dramatically affects the service ability and service cost of edge computing. Previous work mostly assume that the edge servers are installed at one time. However, due to ever-increasing services, limited budget and evolving techniques, it is more reasonable to deploy edge servers in a gradual fashion. In this paper, we propose a demand-driven incremental deployment strategy (DDID) to resolve this problem. First, a novel demand model is designed to quantify the rigid and non-rigid demand of IoT services for edge computing. Then, we formulate the edge server multi-period deployment problem as a bi-level integer linear program model. The lower-level placement is to minimize the overall deployment cost throughout a planning horizon. We adopt a subgradient optimization with Lagrangian dual to solve this subproblem. In the upper-level allocation, due to the capacity limitation, we adopt a best-effort tuning scheme to prioritize the high demand services with multiple objectives. This subproblem is addressed by an improved MOEA/D (Multi-objective Evolutionary Algorithm Based on Decomposition). Finally, we evaluate the DDID in synthetic topologies. Experimental results show that, compared to the one-time deployment method, it reduces the deployment cost by 18% on average with acceptable service ability loss for edge computing.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85117773046&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TNSE.2021.3120270
    http://hdl.handle.net/10576/35248
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video