• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Pharmacy
  • Pharmacy Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Catalytic Fast Pyrolysis of Soybean Straw Biomass for Glycolaldehyde-Rich Bio-oil Production and Subsequent Extraction

    Thumbnail
    View/Open
    2021 ACS Omega.pdf (1.835Mb)
    Date
    2021-12
    Author
    Tahir, Mudassir Hussain
    Irfan, Rana Muhammad
    Hussain, Muhammad Bilal
    Alhumade, Hesham
    Al-Turki, Yusuf
    Cheng, Xingxing
    Karim, Abdul
    Ibrahim, Muhammad
    Rathore, Hassaan Anwer
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In this study, soybean straw (SS) as a promising source of glycolaldehyde-rich bio-oil production and extraction was investigated. Proximate and ultimate analysis of SS was performed to examine the feasibility and suitability of SS for thermochemical conversion design. The effect of the co-catalyst (CaCl2 + ash) on glycolaldehyde concentration (%) was examined. Thermogravimetric-Fourier-transform infrared (TG-FTIR) analysis was applied to optimize the pyrolysis temperature and biomass-to-catalyst ratio for glycolaldehyde-rich bio-oil production. By TG-FTIR analysis, the highest glycolaldehyde concentration of 8.57% was obtained at 500 °C without the catalyst, while 12.76 and 13.56% were obtained with the catalyst at 500 °C for a 1:6 ratio of SS-to-CaCl2 and a 1:4 ratio of SS-to-ash, respectively. Meanwhile, the highest glycolaldehyde concentrations (%) determined by gas chromatography-mass spectrometry (GC-MS) analysis for bio-oils produced at 500 °C (without the catalyst), a 1:6 ratio of SS-to-CaCl2, and a 1:4 ratio of SS-to-ash were found to be 11.3, 17.1, and 16.8%, respectively. These outcomes were fully consistent with the TG-FTIR results. Moreover, the effect of temperature on product distribution was investigated, and the highest bio-oil yield was achieved at 500 °C as 56.1%. This research work aims to develop an environment-friendly extraction technique involving aqueous-based imitation for glycolaldehyde extraction with 23.6% yield. Meanwhile, proton nuclear magnetic resonance (1H NMR) analysis was used to confirm the purity of the extracted glycolaldehyde, which was found as 91%.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85120906753&origin=inward
    DOI/handle
    http://dx.doi.org/10.1021/acsomega.1c04717
    http://hdl.handle.net/10576/35371
    Collections
    • Pharmacy Research [‎1450‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video