• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Hybrid Deep Reinforcement Learning for Autonomous Vehicles Smart-Platooning

    Thumbnail
    Date
    2021-12-01
    Author
    Prathiba, Sahaya Beni
    Raja, Gunasekaran
    Dev, Kapal
    Kumar, Neeraj
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    The development of Autonomous Vehicles (AVs) envisions the promising technology of future Intelligent Transportation Systems (ITS). However, the complex road structures and increased vehicles cause traffic congestion and road safety, which eventually leads to horrible accidents. Cooperative driving of AVs, a groundbreaking initiative of vehicle platooning, epitomizes the next wave in vehicular technology through minimizing accident risks, transport times, costs, energy, and fuel consumption. However, the traditional machine learning-based platooning approaches fail to regulate the policy with the dynamic feature of AVs. This paper proposes a hybrid Deep Reinforcement learning and Genetic algorithm for Smart-Platooning (DRG-SP) the AVs. The leverage of the deep reinforcement learning mechanism addresses the computational complexity and accommodates the high dynamic platoon environments. Adopting the Genetic Algorithm in Deep Reinforcement learning overcomes the slow convergence problem and offers long-term performance. The simulation results reveal that the Smart-Platooning effectively forms and maintains the platoons by minimizing traffic congestion and fuel consumption.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85118557094&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TVT.2021.3122257
    http://hdl.handle.net/10576/35493
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video