• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Malicious mining code detection based on ensemble learning in cloud computing environment

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021-12-01
    Author
    Li, Shudong
    Li, Yuan
    Han, Weihong
    Du, Xiaojiang
    Guizani, Mohsen
    Tian, Zhihong
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Hackers increasingly tend to abuse and nefariously use cloud services by injecting malicious mining code. This malicious code can be spread through infrastructures in the cloud platforms and pose a great threat to users and enterprises. In this study, a method is proposed for detecting malicious mining code in the cloud platforms, which constructs a detection model by fusing the Bagging and Boosting algorithms. By randomly extracting samples and letting models vote together to decide, the variance of model detection can be reduced obviously. Compared with traditional classifiers, the proposed method can obtain higher accuracy and better robustness. The experimental results show that, for the given dataset, the values of AUC and F1-score can reach 0.992 and 0.987 respectively, and the standard deviation of AUC values under different data inputs is only 0.0009.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85113388644&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.simpat.2021.102391
    http://hdl.handle.net/10576/35495
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video