• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dynamic Contract Design for Federated Learning in Smart Healthcare Applications

    Thumbnail
    Date
    2021-12-01
    Author
    Lim, Wei Yang Bryan
    Garg, Sahil
    Xiong, Zehui
    Niyato, Dusit
    Leung, Cyril
    Miao, Chunyan
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Currently, the data collected by the Internet of Healthcare Things, i.e., healthcare oriented Internet of Things (IoT), still rely on cloud-based centralized data aggregation and processing. To reduce the need for transmission of data to the cloud, the edge computing architecture may be adopted to facilitate machine learning at the edge of the network through leveraging on the amassed computation resources of pervasive IoT devices. In this article, federated learning (FL) is proposed to enable privacy-preserving collaborative model training at the edge of the network across distributed IoT users. However, the users in the FL network may have different willingness to participate (WTP), a hidden information unknown to the model owner. Furthermore, the development of healthcare applications typically requires sustainable user participation, e.g., for the continuous collection of data during which a user's WTP may change over time. As such, we leverage on the dynamic contract design to consider a two-period incentive mechanism that satisfies the intertemporal incentive compatibility (IIC), such that the self-revealing mechanism of the contract holds across both periods. The performance evaluation shows that our contract design satisfies the IIC constraints and derives greater profits than that of the uniform pricing scheme, thus validating its effectiveness in mitigating the adverse impacts of the information asymmetry.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85106754762&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2020.3033806
    http://hdl.handle.net/10576/35498
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video