• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Artificial Intelligence (AI)-Empowered Intrusion Detection Architecture for the Internet of Vehicles

    Thumbnail
    Date
    2021-06-01
    Author
    Alladi, Tejasvi
    Kohli, Varun
    Chamola, Vinay
    Yu, F. Richard
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    Recent advances in the Internet of Things (IoT) and the adoption of IoT in vehicular networks have led to a new and promising paradigm called the Internet of Vehicles (IoV). However, the mode of communication in IoV being wireless in nature poses serious cybersecurity challenges. With many vehicles being connected in the IoV network, the vehicular data is set to explode. Traditional intrusion detection techniques may not be suitable in these scenarios with an extremely large amount of vehicular data being generated at an unprecedented rate and with various types of cybersecurity attacks being launched. Thus, there is a need for the development of advanced intrusion detection techniques capable of handling possible cyberattacks in these networks. Toward this end, we present an artificial intelligence (AI)-based intrusion detection architecture comprising Deep Learning Engines (DLEs) for identification and classification of the vehicular traffic in the IoV networks into potential cyberattack types. Also, taking into consideration the mobility of the vehicles and the realtime requirements of the IoV networks, these DLEs will be deployed on Multi-access Edge Computing (MEC) servers instead of running on the remote cloud. Extensive experimental results using popular evaluation metrics and average prediction time on a MEC testbed demonstrate the effectiveness of the proposed scheme.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85111158028&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/MWC.001.2000428
    http://hdl.handle.net/10576/35667
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video