• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pgride: Privacy-preserving group ridesharing matching in online ride hailing services

    Thumbnail
    Date
    2021-04-01
    Author
    Yu, Haining
    Zhang, Hongli
    Yu, Xiangzhan
    Du, Xiaojiang
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    An online ride hailing (ORH) service creates a typical supply-and-demand two-sided market, which enables riders and drivers to establish optimized rides conveniently via mobile applications. Group ridesharing is a novel form of ridesharing, which allows a group of riders to share a vehicle that holds the minimum aggregate distance to the whole group. Accompanied by the advantage of ORH services, there comes some vital privacy concerns. In this article, we propose a privacy-preserving online group ridesharing matching scheme for ORH services, called PGRide. PGRide can select the nearest driver to serve a group of riders, without leaking the location privacy of both riders and drivers. In PGRide, we propose an encrypted aggregate distance computation approach by using somewhat homomorphic encryption with ciphertexts packing, which efficiently computes the aggregate distances from a group of riders to large-scale dynamic drivers in encrypted form. Meanwhile, we design a secure minimum selection protocol by using ciphertexts packing and blinding, which efficiently finds the minimum element from a set of encrypted integers without leaking any actual element value. Theoretical analysis and performance evaluations prove that PGRide is secure, accurate, and efficient.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85103310362&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2020.3030274
    http://hdl.handle.net/10576/35857
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video