• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A survey on federated learning: The journey from centralized to distributed on-site learning and beyond

    Thumbnail
    Date
    2021-04-01
    Author
    Abdulrahman, Sawsan
    Tout, Hanine
    Ould-Slimane, Hakima
    Mourad, Azzam
    Talhi, Chamseddine
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Driven by privacy concerns and the visions of deep learning, the last four years have witnessed a paradigm shift in the applicability mechanism of machine learning (ML). An emerging model, called federated learning (FL), is rising above both centralized systems and on-site analysis, to be a new fashioned design for ML implementation. It is a privacy-preserving decentralized approach, which keeps raw data on devices and involves local ML training while eliminating data communication overhead. A federation of the learned and shared models is then performed on a central server to aggregate and share the built knowledge among participants. This article starts by examining and comparing different ML-based deployment architectures, followed by in-depth and in-breadth investigation on FL. Compared to the existing reviews in the field, we provide in this survey a new classification of FL topics and research fields based on thorough analysis of the main technical challenges and current related work. In this context, we elaborate comprehensive taxonomies covering various challenging aspects, contributions, and trends in the literature, including core system models and designs, application areas, privacy and security, and resource management. Furthermore, we discuss important challenges and open research directions toward more robust FL systems.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85103307200&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2020.3030072
    http://hdl.handle.net/10576/35858
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Machine Learning for Healthcare Wearable Devices: The Big Picture 

      Sabry, Farida; Eltaras, Tamer; Labda, Wadha; Alzoubi, Khawla; Malluhi, Qutaibah ( John Wiley and Sons Inc , 2022 , Article Review)
      Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and ...
    • Thumbnail

      A cooperative Q-learning approach for distributed resource allocation in multi-user femtocell networks 

      Saad H.; Mohamed A.; El Batt T. ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference)
      This paper studies distributed interference management for femtocells that share the same frequency band with macrocells. We propose a multi-agent learning technique based on distributed Q-learning, called subcarrier-based ...
    • Thumbnail

      A cooperative Q-learning approach for online power allocation in femtocell networks 

      Saad H.; Mohamed A.; Elbatt T. ( IEEE , 2013 , Conference)
      In this paper, we address the problem of distributed interference management of cognitive femtocells that share the same frequency range with macrocells using distributed multiagent Q-learning. We formulate and solve three ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video