• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A method of chained recommendation for charging piles in internet of vehicles

    Thumbnail
    View/Open
    A method of chained recommendation for charging piles in internet of vehicles.pdf (1.591Mb)
    Date
    2021-02-01
    Author
    Zhang, Tianle
    Zheng, Liwen
    Jiang, Yu
    Tian, Zhihong
    Du, Xiaojiang
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    With the popularization of new energy electric vehicles (EVs), the recommendation algorithm is widely used in the relatively new field of charge piles. At the same time, the construction of charging infrastructure is facing increasing demand and more severe challenges. With the ubiquity of Internet of vehicles (IoVs), inter-vehicle communication can share information about the charging experience and traffic condition to help achieving better charging recommendation and higher energy efficiency. The recommendation of charging piles is of great value. However, the existing methods related to such recommendation consider inadequate reference factors and most of them are generalized for all users, rather than personalized for specific populations. In this paper, we propose a recommendation method based on dynamic charging area mechanism, which recommends the appropriate initial charging area according to the user's warning level, and dynamically changes the charging area according to the real-time state of EVs and charging piles. The recommendation method based on a classification chain provides more personalized services for users according to different charging needs and improves the utilization ratio of charging piles. This satisfies users' multilevel charging demands and realizes a more effective charging planning, which is beneficial to overall balance. The chained recommendation method mainly consists of three modules: intention detection, warning levels classification, and chained recommendation. The dynamic charging area mechanism reduces the occurrence of recommendation conflict and provides more personalized service for users according to different charging needs. Simulations and computations validate the correctness and effectiveness of the proposed method.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087917054&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s00607-020-00832-7
    http://hdl.handle.net/10576/35981
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video