• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal Cooperative Relaying and Power Control for IoUT Networks with Reinforcement Learning

    Thumbnail
    Date
    2021-01-15
    Author
    Su, Yuhan
    Liwang, Minghui
    Gao, Zhibin
    Huang, Lianfen
    Du, Xiaojiang
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Internet of Underwater Things (IoUT) consists of numerous sensor nodes distributed in an underwater area for sensing, collecting, processing information, and sending related messages to the data processing center. However, the characteristics of the underwater environment will bring strict limitations on communication coverage and power scarcity to IoUT networks. Applying cooperative communications to IoUT networks can expand the communication range and alleviate power shortages. In this article, we investigate the cooperative communication problem in a power-limited cooperative IoUT system and propose a reinforcement learning-based underwater relay selection strategy. Specifically, we first determine the optimal transmit powers of the source node and the selected underwater relay to maximize the end-to-end signal-to-noise ratio of the system. Then, we formulate the underwater cooperative relaying process as a Markov process and apply reinforcement learning to obtain an effective underwater relay selection strategy. The simulation results show that the performance of the proposed scheme outperforms that of the equal transmit power settings under the same conditions. In addition, the proposed deep Q-network-based underwater relay selection strategy improves the communication efficiency compared with the Q-learning-based strategy, and the number of iterations needed for convergence can be effectively reduced.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099160070&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2020.3008178
    http://hdl.handle.net/10576/35982
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video