• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient rule engine for smart building systems

    Thumbnail
    Date
    2015
    Author
    Sun, Yan
    Wu, Tin-Yu
    Zhao, Guotao
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    In smart building systems, the automatic control of devices relies on matching the sensed environment information to customized rules. With the development of wireless sensor and actuator networks (WSANs), low-cost and self-organized wireless sensors and actuators can enhance smart building systems, but produce abundant sensing data. Therefore, a rule engine with ability of efficient rule matching is the foundation of WSANs based smart building systems. However, traditional rule engines mainly focus on the complex processing mechanism and omit the amount of sensing data, which are not suitable for large scale WSANs based smart building systems. To address these issues, we build an efficient rule engine. Specifically, we design an atomic event extraction module for extracting atomic event from data messages, and then build a ?-network to acquire the atomic conditions for parsing the atomic trigger events. Taking the atomic trigger events as the key set of MPHF, we construct the minimal perfect hash table which can filter the majority of the unused atomic event with O (1) time overhead. Moreover, a rule engine adaption scheme is proposed to minimize the rule matching overhead. We implement the proposed rule engine in a practical smart building system. The experimental results show that the rule engine can perform efficiently and flexibly with high data throughput and large rule set. 2014 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TC.2014.2345385
    http://hdl.handle.net/10576/36150
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video