• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impact of location heterogeneity on random walk mobility models

    Thumbnail
    Date
    2013
    Author
    Zhang, Jinbei
    Luoyi Fu
    Wang, Xinbing
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    This paper investigates random walk mobility models with location heterogeneity, where different locations may have different neighboring regions.With the assumption of totally n locations, we consider two cases, i.e., full-range locations where nodes situated have the capability to shuffle throughout the network and long-range locations where nodes are allowed for moving to positions nearby within a certain range. In the former situation, with the exact expressions derived, we find location heterogeneity has a critical impact on the first hitting time of random walk, varying from ?(n) to ?(n3) according to different extent of heterogeneity. The result covers, as two special cases, both the classic independent and identically distributed (i.i.d) mobility and traditional random walk as we vary the number of full-range locations. In the latter one, our asymptotic results on both the first crossing time and cover time suggest that they are inversely proportional to the range of neighboring region r (? r-2 and ? r-1, respectively). Furthermore, extensive simulation is conducted to verify our observations and enhance the understanding on the effect of network parameters. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/GLOCOM.2013.6831098
    http://hdl.handle.net/10576/36213
    Collections
    • Computer Science & Engineering [‎2485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video