• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Asynchronous Federated Learning-based ECG Analysis for Arrhythmia Detection

    Thumbnail
    Date
    2021-01-01
    Author
    Sakib, Sadman
    Fouda, Mostafa M.
    Md Fadlullah, Zubair
    Abualsaud, Khalid
    Yaacoub, Elias
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    With the rapid elevation of technologies such as the Internet of Things (IoT) and Artificial Intelligence (AI), the traditional cloud analytics-based approach is not suitable for a long time and secure health monitoring and lacks online learning capability. The privacy issues of the acquired health data of the subjects have also arisen much concern in the cloud analytics approach. To establish a proof-of-concept, we have considered a critical use-case of cardiac activity monitoring by detecting arrhythmia from analyzing Electrocardiogram (ECG). We have investigated two Federated Learning (FL) architectures for arrhythmia classification utilizing the private ECG data acquired within each smart logic-in-sensor, deployed at the Ultra-Edge Nodes (UENs). The envisioned paradigm allows privacy-preservation as well as the ability to accomplish online knowledge sharing by performing localized and distributed learning in a lightweight manner. Our proposed federated learning architecture for ECG analysis is further customized by asynchronously updating the shallow and deep model parameters of a custom Convolutional Neural Network (CNN)-based lightweight AI model to minimize valuable communication bandwidth consumption. The performance and generalization abilities of the proposed system are assessed by considering multiple heartbeats classes, employing four different publicly available datasets. The experimental results demonstrate that the proposed asynchronous federated learning (Async-FL) approach can achieve encouraging classification efficiency while also ensuring privacy, adaptability to different subjects, and minimizing the network bandwidth consumption.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85123766775&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/MeditCom49071.2021.9647636
    http://hdl.handle.net/10576/36236
    Collections
    • Computer Science & Engineering [‎2483‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video