• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy-Aware Blockchain and Federated Learning-Supported Vehicular Networks

    Thumbnail
    Date
    2021-01-01
    Author
    Aloqaily, Moayad
    Ridhawi, Ismaeel Al
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    The aerial capabilities and flexibility in movement of Unmanned Aerial Vehicles (UAVs) has enabled them to adaptively provide both traditional and more contemporary services. In this article, we introduce a solution that integrates the capabilities of both UAVs and Unmanned Ground Vehicles (UGVs) to provide both intelligent connectivity and services to both aerial and ground connected devices. A cooperative solution is adopted that considers nodes' power and movement constraints. The UAV and UGV cooperative process ensures continuous power availability to UAVs to support seamless and continuous service availability to end-devices. A Federated Learning (FL) approach is adopted at the edge to ensure accurate and up-to-date service provisioning in accordance with the surrounding environment and network constraints. Moreover, Blockchain technology is used to decentralize the provisioning and control aspects, and ensure authenticity and integrity. Extensive simulations are conducted to test the soundness and applicability of the proposed solution. Results show significant improvement in terms of connectivity, service availability, and UAV energy enhancements when compared to traditional mobile and vehicular communication techniques.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85113210554&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TITS.2021.3103645
    http://hdl.handle.net/10576/36266
    Collections
    • Computer Science & Engineering [‎2483‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video