• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Blockchain-Based On-Demand Computing Resource Trading in IoV-Assisted Smart City

    Thumbnail
    Date
    2021-01-01
    Author
    Lin, Xi
    Wu, Jun
    Mumtaz, Shahid
    Garg, Sahil
    Li, Jianhua
    Guizani, Mohsen
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In a smart city, Mobile Edge Computing (MEC) are generally deployed in static fashion in base stations (BSs). While moving vehicles with advanced on-board equipment can be regarded as dynamic computing resource transporters ignoring geographical limitations. Thus Internet of Vehicle (IoV) could assist the smart city to achieve flexible computing resource demand response (DR) via paid sharing the idle vehicle computing resources. Motivated by this, we propose a Peer-to-Peer (P2P) computing resource trading system to balance computing resource spatio-temporal dynamic demands in IoV-assisted smart city. On one hand, to guarantee transaction security and privacy-preserving in our system, we employ a consortium blockchain approach and demonstrate the process of secure computing resource trading without involving a centralized trusted third-party. On the other hand, to encourage individual smart vehicles to participate in our system, we construct a two-stage Stackelberg game jointly optimizing the utilities of buyers and sellers. And we also derive the optimal computing pricing and trading amount strategies in this proposed game. Finally, security analysis shows the security performance of our system and numerical simulations show that our strategies can encourage the collaboration between the buyer and smart vehicles.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85079063027&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TETC.2020.2971831
    http://hdl.handle.net/10576/36292
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video