• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance enhancement of CZTS-based solar cells with tungsten disulfide as a new buffer layer

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    S. Yasin_Optik (783.1Kb)
    Date
    2023-01-01
    Author
    M., Moustafa
    Mourched, B.
    Salem, S.
    Yasin, S.
    Metadata
    Show full item record
    Abstract
    2D layered Transition Metal Dichalcogenide materials (TMDCs) have shown promising potential for ultra-thin photovoltaic and solar cells applications owing to their outstanding photon absorption and electrical and optoelectronics features. This paper intended to discuss a numerical exploration of the CZTS based solar cells employing the solar cell capacitance simulator (SCAPS-1D), using a novel non-toxic n-type WS2 TMDCs as a buffer layer. The cell parameters, such as the thickness and defect density of the CZTS absorber, are optimized. Then, the impact of the energy bandgap (Eg) and the back contact work function of the WS2 buffer layer on cell performance is investigated. An optimized Eg of 2.2 eV is declared. The results refer to the promoting conduction band alignments at the interface of the buffer absorber (i.e., WS2/CZTS). Further, we have studied the photovoltaic cell performance versus the defect level of the WS2 buffer layer. It was resolved that deep defect levels exceeding 1 × 1018 cm−3 degrade cell efficiency. The results show an optimized power conversion efficiency of about 26.81% with Voc = 1.17 V, Jsc = 27.7 mA/cm2, and FF = 83.66%. The simulation was further analyzed and discussed at various operating temperatures. The novel device architecture using WS2 as a buffer layer might encourage the fabrication of non-toxic CZTS solar cells.
    URI
    https://www.sciencedirect.com/science/article/pii/S0038109822003313
    DOI/handle
    http://dx.doi.org/10.1016/j.ssc.2022.115007
    http://hdl.handle.net/10576/36524
    Collections
    • Mathematics, Statistics & Physics [‎790‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video