• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Inverse Adaptive Cluster Sampling with Unequal Selection Probabilities: Case Studies on Crab Holes and Arsenic Pollution

    Thumbnail
    Date
    2015
    Author
    Salehi, Mohammad
    Moradi, Mohammad
    Al Khayat, Jassim A.
    Brown, Jennifer
    Yousif, Adil Eltayeb Mohamed
    Metadata
    Show full item record
    Abstract
    Adaptive cluster sampling is an efficient method of estimating the parameters of rare and clustered populations. The method mimics how biologists would like to collect data in the field by targeting survey effort to localised areas where the rare population occurs. Another popular sampling design is inverse sampling. Inverse sampling was developed so as to be able to obtain a sample of rare events having a predetermined size. Ideally, in inverse sampling, the resultant sample set will be sufficiently large to ensure reliable estimation of population parameters. In an effort to combine the good properties of these two designs, adaptive cluster sampling and inverse sampling, we introduce inverse adaptive cluster sampling with unequal selection probabilities. We develop an unbiased estimator of the population total that is applicable to data obtained from such designs. We also develop numerical approximations to this estimator. The efficiency of the estimators that we introduce is investigated through simulation studies based on two real populations: crabs in Al Khor, Qatar and arsenic pollution in Kurdistan, Iran. The simulation results show that our estimators are efficient.
    DOI/handle
    http://dx.doi.org/10.1111/anzs.12118
    http://hdl.handle.net/10576/3653
    Collections
    • Mathematics, Statistics & Physics [‎786‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video