• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Building thermal energy modeling with loss minimization

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2014
    Author
    Gabbar, Hossam A.
    Bondarenko, Daniel
    Hussain, Sajid
    Musharavati, Farayi
    Pokharel, Shaligram
    Metadata
    Show full item record
    Abstract
    The thermal losses in buildings are significant energy sinks. The Energy Semantic Network (ESN) is a new method for finding these losses at the design stage, as well as for the existing structures. The research purpose of ESN is to take into consideration the governing factors of building thermal performance (i.e. the insulation materials, the dimensions, the loads, and the schedules of people interactions), associate these factors with any building of choice, and to subject the model to range of dynamical changes, that will help to make the decisions for improving the building thermal performance. The current work is only an early stage on ESN, the end goal of ESN is to evaluate the thermal energy conservation technologies with respect to the dynamical thermal changes, and track the dominant sinks resulting from these changes. Currently, the energy conservation technologies present an opportunity for reducing the utility use, and, thereby, the savings in capital for long term performance. The thermal energy conservation problems are unique to every building, due to the storage and the supply of the energy in response to the seasonal demands, structure, and the nature of the building utilization (the involvement of people). With the current simulation software, such as Energy Plus, there exists a convenient way of simulating the annual building performance, without the tediousness of monitoring the physical building. However, in that case, any particular spontaneous effects may not be completely accounted. The ESN structure is intended to make up for the spontaneous effects, and be accountable for possible spikes in the energy use that may occur throughout the year. Such spikes in energy consumption do not have to be singular, because it is possible to assign an array of situations where energy losses occur and track them to the specific location. The use of ESN for tracking the energy losses can lead to a solution for preventing similar spikes in the future by isolating the most significant sink. The enclosed research on the ESN method includes the foundations of ESN, the case study of a hypothetical hotel located in Ontario, and a detailed Simulink representation of ESN. 2014 Elsevier B.V. All rights reserved.
    DOI/handle
    http://dx.doi.org/10.1016/j.simpat.2014.08.006
    http://hdl.handle.net/10576/36678
    Collections
    • Mechanical & Industrial Engineering [‎1460‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video